Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38571383

RESUMEN

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Asunto(s)
Desinfectantes , Desinfección , Desinfección/métodos , Matriz Extracelular de Sustancias Poliméricas , Desinfectantes/farmacología , Cloro/farmacología , Cinética
2.
Artículo en Chino | MEDLINE | ID: mdl-20137301

RESUMEN

OBJECTIVE: To investigate the effects of sinusoidal magnetic field on isolated sarcoplasmic reticulum (SR) calcium release channel (RyR1) function. METHODS: With the Ca2+ dynamic spectrum and isotope labeled methods, the Ca2+ release and [(3)H]-Ryanodine binding, the initial rates of NADH oxidation and the production of superoxide of SR exposed to 50 Hz sinusoidal magnetic field (MF) were investigated respectively. RESULTS: 0.4 mT, 50 Hz sinusoidal MF exposure for 30 min increased SR Ca2+ release initial rate about 35% from (10.82 +/- 0.89) pmol.mg(-1) pro.s(-1) to (14.69 +/- 1.21) pmol.mg(-1) pro.s(-1); and the [(3)H]-Ryanodine binding by about 15% from (2.13 +/- 0.05) pmol/mg pro to (2.45 +/- 0.07) pmol/mg pro, which regulated by 1 mmol/L NADH with 1 mmol/L NAD+. Meanwhile MF upregulated the rate of NADH oxidation by about 22% from (0.88 +/- 0.11) x 10(-4) FI/s to (1.07 +/- 0.13) x 10(-4) FI/s and upregulated the production of superoxide by about 32% from (0.99 +/- 0.09) x 10(-5) FI/s to (1.31 +/- 0.06) x 10(-5) FI/s. CONCLUSION: 0.4 mT sinusoidal MF increases the activity of RyR1 within the low redox potential environment, and promotes NADH oxidase activity and superoxide production.


Asunto(s)
Calcio/metabolismo , Campos Magnéticos/efectos adversos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Conejos , Retículo Sarcoplasmático/efectos de la radiación
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 40(3): 168-72, 2006 May.
Artículo en Chino | MEDLINE | ID: mdl-16836880

RESUMEN

OBJECTIVE: To investigate the effects of power frequency magnetic field on the Ca2+ transport dynamics of isolated sarcoplasmic reticulum vesicles. METHODS: The assays of Ca2+ uptake time course and the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles were investigated by using dynamic mode of spectrometry with a Ca2+ dye; Ca2+ release channel activation was examined by 3H-ryanodine binding and Ca2+ release assays; membrane fluidity of sarcoplasmic reticulum vesicles was examined by fluorescence polarization, without or with exposure to the vesicles at a 0.4 mT, 50 Hz sinusoidal magnetic field. RESULTS: 0.4 mT, 50 Hz sinusoidal magnetic field exposure caused about a 16% decline of the initial Ca2+ uptake rate from a (29.18 +/- 3.90) pmol.mg(-1).s(-1) to a (24.60 +/- 3.81) pmol.mg(-1).s(-1) and a 26% decline of the Ca2+-ATPase activity from (0.93 +/- 0.05) micromol.mg(-1).min(-1) to (0.69 +/- 0.07) micromol.mg(-1).min(-1) of sarcoplasmic reticulum vesicles, whereas caused a 15% increase of the initial Ca2+ release rate from (4.83 +/- 0.82) pmol.mg(-1).s(-1) to (5.65 +/- 0.43) pmol.mg(-1).s(-1) and a 5% increase in 3H-ryanodine binding to the receptor from (1.10 +/- 0.12) pmol/mg to (1.16 +/- 0.13) pmol/mg, respectively. CONCLUSION: The decline of Ca2+-ATPase activity and the increase of Ca2+ release channel activity should result in a down-regulation of Ca2+ dynamic uptake and an up-regulation of Ca2+ release induced by exposing the sarcoplasmic reticulum to a 0.4 mT, 50 Hz power frequency magnetic field.


Asunto(s)
Calcio/metabolismo , Campos Electromagnéticos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efectos de la radiación , Animales , Señalización del Calcio , Músculo Esquelético/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA